બિંદુઓ $(4, 3)$ અને $(- 1,4)$ માંથી પસાર થતા હોય તથા જેનો પ્રધાન અક્ષ $x-$ અક્ષ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
Solution The standard form of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .$
since the points $(4,\,3)$ and $(-1,\,4)$ lie on the ellipse, we have
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$ ............ $(1)$
and $\frac{1}{a^{2}}+\frac{16}{b^{2}}=1$ ......... $(2)$
Solving equations $(1)$ and $(2),$ we find that $a^{2}=\frac{247}{7}$ and $b^{2}=\frac{247}{15}$
Hence the required equation is
$\frac{x^{2}}{\left(\frac{247}{7}\right)}$ $+\frac{y^{2}}{\frac{247}{15}}=1,$ i.e., $7 x^{2}+15 y^{2}=247$
અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
જો બે ભિનન શાંકવો $x^2+y^2=4 b$ અને $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ ના છેદ બિંદુઓ, વક્ર $y^2=3 x^2$ પર આવેલા હોય, તો આ છેદ બિંદુઓ દ્વારા રચાયેલ લંબચોરસના ક્ષેત્રફળના $3 \sqrt{3}$ ઘણા........................... થાય.
ઉપવલયની પ્રધાન અક્ષના અંત્યબિંદુ $A$ અને ગૌણ અક્ષના અંત્યબિંદુ $B$ માંથી પસાર થતી રેખા તેના સહાયક વૃતને બિંદુ $M$ આગળ સ્પર્શેં છે તો $A, M$ અને ઉગમ બિંદુ $O$ આગળ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ-
રેખા $L$ એ રેખાઓ $b x+10 y-8=0$ અને $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$ ના છેદબિંદુ માંથી પસાર થાય છે . જો રેખા $L$ એ બિંદુ $(1,1)$ માંથી પસાર થાય છે અને વર્તુળ $17\left( x ^{2}+ y ^{2}\right)=16$ ને સ્પર્શે છે તો ઉપવલય $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ ની ઉત્કેન્દ્રીતા મેળવો.
બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.