ધારો કે $S$ અને $S'$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$પરંતુ ચલ બિંદુ $P$ છે. જો ત્રિકોણ $PSS'$ નું ક્ષેત્રફળ $A$ નું મહત્તમ મૂલ્ય : ............. ચો. એકમ 

  • A

    $12$ 

  • B

    $24$ 

  • C

    $36$

  • D

    $48$

Similar Questions

ધારો કે $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ અને $\mathrm{a}=f \circ g(10), \mathrm{b}=g \circ f(3)$. જો $\mathrm{e}$ અને $l$ એ ઉપવલય $\frac{x^2}{\mathrm{a}}+\frac{y^2}{\mathrm{~b}}=1$ ની અનુક્રમે ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ દર્શાવે, તો $8 \mathrm{e}^2+l^2=$.................

  • [JEE MAIN 2024]

જો પરવલય $y^2 = x$ એ બિંદુ $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta  > 0} \right)$ અને ઉપવલય $x^2 + 2y^2 = 1$ આગળનો સ્પર્શક હોય તો $a$ = 

  • [JEE MAIN 2019]

આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ

$\frac{x^{2}}{36}+\frac{y^2} {16}=1$

આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ

$\frac{x^{2}}{16}+\frac {y^2} {9}=1$

ઉગમબિંદુ આગળ કેન્દ્રવાળા ઉપવલયની ઉત્કેન્દ્રતા $1/2$ છે. જો એક નિયામિકા $x = 4$ હોય તો ઉપવલયનું સમીકરણ :