ધારો કે $S$ અને $S'$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$પરંતુ ચલ બિંદુ $P$ છે. જો ત્રિકોણ $PSS'$ નું ક્ષેત્રફળ $A$ નું મહત્તમ મૂલ્ય : ............. ચો. એકમ
$12$
$24$
$36$
$48$
ધારોકે ઉપવલય $\frac{x^2}{36}+\frac{y^2}{4}=1$ પર ના બિંદુ $(3 \sqrt{3}, 1)$ પાસે ના સ્પર્શક અને અભિલંબ $x$-અક્ષને અનુક્રમે બિંદુ $A$ અને $B$ માં મળે છે. ધારોકે $AB$ ને વ્યાસ તરીકે લેતા વર્તુળ $C$ દોરી શકાય છે અને રેખા $x=2 \sqrt{5}$ એ $\alpha^2-\beta^2=........$
સમીકરણ $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ક્યારે ઉપવલય દર્શાવે ?
બિંદુ $P\ (3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શ છે.$A$ અને $B$ ના યામ મેળવો.
જે ઉપવલયની નાભિઓ વચ્ચેનું અંતર $ 8 $ હોય અને નિયામિકાઓ વચ્ચેનું અંતર $18 $ હોય, તે ઉપવલયનું સમીકરણ $ (a > b) .....$
ઉપવલય $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, ની અંતર્ગત, જેનું એક શિરોબિંદુ આ ઉપવલયની મુખ્ય અક્ષનું એક અંત્ય બિંદુ હોય અને જેની એક બાજુ $y$-અક્ષને સમાંતર હોય તેવા ત્રિકોણનું મહત્તમ ક્ષેત્રફળ $6 \sqrt{3}$ છે. તો આ ઉપવલયની ઉત્કેન્દ્રતા ....... છે,