અહી $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ અને $\quad T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ હોય તો $n ( S \cap T )$ ની કિમંત $......$ થાય.

  • [JEE MAIN 2022]
  • A

    $27$

  • B

    $26$

  • C

    $25$

  • D

    $24$

Similar Questions

બે ગણ $A$ અને $B$ નીચે પ્રમાણે છે: $A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1$ અને $\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ તો : . . . . .

  • [JEE MAIN 2018]

ઉપવલય $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ પરનું બિંદુ $P$ એ દ્રીતીય ચરણમાં એવી રીતે આપેલ છે કે જેથી બિંદુ  $\mathrm{P}$  આગળનો ઉપવલયનો સ્પર્શક એ રેખા $x+2 y=0$ ને લંબ થાય છે. અહી $S$ અને $\mathrm{S}^{\prime}$ એ ઉપવલયની નાભીઓ છે અને $\mathrm{e}$ એ ઉત્કેન્દ્રિતા છે. જો $\mathrm{A}$ એ ત્રિકોણ $SPS'$ નું ક્ષેત્રફળ છે તો $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભિઓ માંથી પસાર થતું અને $(0,3) $ કેન્દ્ર ધરાવતું વર્તૂળનું સમીકરણ મેળવો.

  • [JEE MAIN 2013]

જે વકો $\frac{x^{2}}{a}+\frac{y^{2}}{b}$ અને $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ એકબીજને $90^{\circ}$ નાં ખૂણે છેદતા હોય, તો નીચેનામાંથી કયો સંબંધ સત્ય છે ?

  • [JEE MAIN 2021]

જો $\frac{{{x^2}}}{4}\,\, + \;\,{y^2}\,\, = \,\,1$પરના બે બિંદુઓ $P_1$ અને $P_2$ કે જ્યાં આગળના સ્પર્શકો એ બિંદુ $(0, 1)$ અને $(2, 0)$ ને જોડતી જીવાને સમાંતર હોય, તો $P_1$ અને $P_2$ વચ્ચેનું અંતર :