English
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :

A

$\frac{{\sqrt 2 }}{2}$

B

$\frac{{\sqrt 3 }}{2}$

C

$1/2$

D

$3/4$

Solution

The ellipse $E_1$ touches $x$ axis at $(\pm 3,0)$ and $y$ axis at $(0, \pm 2)$

Since the ellipse is inscribed in rectangle $R$ whose sides are parallel to the coordinate axis, the vertices of rectangle are $(\pm 3, \pm 2)$

Let the equation of ellipse $E_2$ be $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

The ellipse circumscribes the rectangle $R$, so the vertices of rectangle lies on ellipse $E _2$

Therefore we get $\frac{9}{a^2}+\frac{4}{b^2}=1$

Given that ellipse $E_2$ passes through $(0,4)$

So we get $b =4$ and $a ^2=12$

We know that $a^2=b^2\left(1-e^2\right)$

$\Rightarrow e ^2=\frac{1}{4}$

$\Rightarrow e =\frac{1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.