ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :
$\frac{{\sqrt 2 }}{2}$
$\frac{{\sqrt 3 }}{2}$
$1/2$
$3/4$
બિંદુ $P\ (3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શ છે.$A$ અને $B$ ના યામ મેળવો.
ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ અને અતિવલય $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ ની નાભિઓ સમાન હોય,તો ${b^2}$= . . .. . ..
ઉપવલય $\, \frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1\,\,$ પર દોરેલા લંબ સ્પર્શકો ક્યા વક્ર પર છેદશે?
જો ઉપવલય $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ અને વર્તુળ $x ^{2}+ y ^{2}=4 b , b > 4$ નાં છેદબિંદુઓ વક્ર $y^{2}=3 x^{2}$ પર આવેલ હોય, તો $b=..... .$
ધારોકે ઉપવલય $\frac{x^2}{36}+\frac{y^2}{4}=1$ પર ના બિંદુ $(3 \sqrt{3}, 1)$ પાસે ના સ્પર્શક અને અભિલંબ $x$-અક્ષને અનુક્રમે બિંદુ $A$ અને $B$ માં મળે છે. ધારોકે $AB$ ને વ્યાસ તરીકે લેતા વર્તુળ $C$ દોરી શકાય છે અને રેખા $x=2 \sqrt{5}$ એ $\alpha^2-\beta^2=........$