જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\,$ ની નાભિઓ, અતિવલય $\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભિઓને સમાન હોય,તો ${b^2}\, = \,\,...........$
$9$
$8$
$10$
$7$
બિંદુ $P$ એવી રીતે ખસે છે કે જેથી $(ae, 0)$ અને $(-ae, 0)$ બિંદુથી તેના અંતરનો સરવાળો હંમેશા $2a$ રહે છે. તો $P$ નો બિંદુપથ શોધો.(જ્યાં $0 < e < 1$).
$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.
વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.
જો $P_1$ અને $P_2$ એ ઉપવલય $\frac{{{x^2}}}{4} + {y^2} = 1$ ના બે ભિન્ન બિંદુઓ છે જ્યાં તે બિંદુઓ આગળનો સ્પર્શક બિંદુ $(0, 1)$ અને $(2, 0)$ ને જોડતી જીવાને સમાંતર હોય તો બિંદુ $P_1$ અને $P_2$ વચ્ચેનું અંતર ......... થાય
$15$ સેમી લંબાઈનો સળિયો $AB$ યામાક્ષો પર એ રીતે મૂકેલ છે કે અંત્યબિંદુ $A$ $x-$ અક્ષ પર અને $B$ $y -$ અક્ષ પર રહે. સળિયા પર $ P(x, y)$ બિંદુ એ રીતે લીધેલ છે કે $AP = 6$ સેમી હોય. સાબિત કરો કે $P$ નો બિંદુગણ ઉપવલય છે.