$C $ ના કયા મૂૂલ્ય માટે સરેરાશ મૂલ્ય પ્રમેયનું તારણ એ અંતરલાર $[1, 3]$ પર વિધેય $f(x) = log_ex $ ને પ્રાપ્ત કરે છે?
$2log_3e$
$\frac{1}{2}\,{\log _e}3$
$log_3e$
$loge3$
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો.
વિધાન $- 1 : (0, 1)$ અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.
વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$ માટે રોલનો પ્રમેય લાગુ પાડી શકાય.
જો વિધેયો $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ અને $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ ને સામાન્ય યરમ બિંદુ $(extreme\,point)$ હોય, તો $a+2 b+7=...........$
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ રોલનું પ્રમેય નું પાલન કરતુ હોય તો
વિધેય $f\left( x \right) = \log x$ નો અંતરાલ $[1,3]$ માટે મધ્યકમાન પ્રમેય નો ઉપયોગ કરી $C$ ની કિંમત મેળવો.