$C $ ના કયા મૂૂલ્ય માટે સરેરાશ મૂલ્ય પ્રમેયનું તારણ એ અંતરલાર $[1, 3]$ પર વિધેય $f(x) = log_ex $ ને પ્રાપ્ત કરે છે?
$2log_3e$
$\frac{1}{2}\,{\log _e}3$
$log_3e$
$loge3$
If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx} = . . .$
જો $f(x) = ax^3 + bx^2 + 11x - 6, x \,\in [1, 3]$ એ રોલના પ્રમેયની શરતોનું પાલન કરે અને ${f}'\,\left( {2\, + \,\frac{1}{{\sqrt 3 }}} \right)\, = \,0$ થાય, તો $a$ અને $b$ શોધો.
વિધેય $f(x) = {e^x},a = 0,b = 1$, તો મધ્યકમાન પ્રમેય મુજબ $c$ ની કિમત મેળવો.
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[5,9]$
અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો . .. . .