ધારો કે $ f$ એવું વિધેય છે કે બધા વાસ્તવિક $x$ માટે સતત અને વિકલનીય છે.જો બધા $x \in [2, 4] $ માટે $ f(2) = -4 $ અને $f(x) \geq 6$ હોય, તો.......
$f(4) < 8$
$f(4) \geq 8$
$f(4) \geq 12$
એકપણ નહિ
જો $ [1, 3] $ પર વ્યાખ્યાયિત વિધેય $f(x) = x^3 - 6x^2 + ax + b$ એ $c\,\, = \,\,\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}$ માટે રોલના પ્રમેયનું પાલન કરે, તો.........
અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો . .. . .
વિધેય $f(x) = {e^x},a = 0,b = 1$, તો મધ્યકમાન પ્રમેય મુજબ $c$ ની કિમત મેળવો.
$f(x) = | x - 2 | + | x - 5 |, x \in R$ વિધેય ધ્યાનમાં લો.
વિધાન $- 1 : f'(4) = 0.$
વિધાન $- 2 : [2, 5] $ માં $f $ સતત છે, $(2, 5)$ માં $f $ વિકલનીય છે અને $f(2) = f(5).$
જો $f:R \to R$ અને $f(x)$ એ દસ ઘાતાંકીય બહુપદી છે કે જેથી $f(x)=0$ ના બધાજ બિજો વાસ્તવિક અને ભિન્ન છે . તો સમીકરણ ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ ને કેટલા બિજો વાસ્તવિક છે ?