ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in  [1, 6]$ માટે $f (1) = -2$  અને $ f'(x) \geq 2$  હોય, તો......

  • A

    $f(6) \geq  8$

  • B

    $f(6) < 8$

  • C

    $f(6) < 5$

  • D

    $f(6) = 5$

Similar Questions

જો $f:R \to R$ અને  $f(x)$ એ દસ ઘાતાંકીય બહુપદી છે કે જેથી $f(x)=0$ ના બધાજ બિજો વાસ્તવિક અને ભિન્ન છે . તો સમીકરણ ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ ને  કેટલા બિજો વાસ્તવિક છે ?

ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી

$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.

નીચેના બે વિધાનો ધ્યાને લો.

$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$

$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,

  • [JEE MAIN 2023]

$\left[ {\frac{\pi }{6},\,\frac{{5\pi }}{6}} \right]\,\,$  અતરલમાં વિધેય ${f}{\text{(x)  =  logsinx }}$ માટે લાંગ્રાજના પ્રમેયના $c$ નું મૂલ્ય કેટલું થાય  $?$

જો $a + b + c = 0 $ હોય, તો સમીકરણ $3ax^2 + 2bx + c = 0$  ના કેટલા બીજ હોય ?

કઈ વાસ્તવિક સંખ્યા $K$ માટે સમીકરણ $2x^3 + 3x + k = 0$ ના બે વાસ્તવિક બીજ $ [0, 1]$ અંતરાલમાં હોય ?