ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in [1, 6]$ માટે $f (1) = -2$ અને $ f'(x) \geq 2$ હોય, તો......
$f(6) \geq 8$
$f(6) < 8$
$f(6) < 5$
$f(6) = 5$
જો $f$ એ વિકલીનીય વિધેય હોય કે જેથી $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ તથા $f(2) = f(5) = f(10)$ આપેેેલ હોય તો સમીકરણ $f'(x) = 0$ જ્યા $x \in \left( { - 5,10} \right)$ ના બિજો ઓછામાઓછા કેટલા મળે ?
વિધેય $f(x) = {x^2} - 4$ એ . . . . અંતરાલમાં રોલના પ્રમેય નું પાલન કરે છે .
$f(x) = | x - 2 | + | x - 5 |, x \in R$ વિધેય ધ્યાનમાં લો.
વિધાન $- 1 : f'(4) = 0.$
વિધાન $- 2 : [2, 5] $ માં $f $ સતત છે, $(2, 5)$ માં $f $ વિકલનીય છે અને $f(2) = f(5).$
જો $f $ અને $g$ એ $ [0,1] $ પર વિકલનીય વિધેયો હોય તથા $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ અને $f\left( 1 \right) = 6,$તો કોઇ $c \in \left] {0,1} \right[$ માટે
$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.