જો વિધેય $f(x) = x(x + 3) e^{-x/2} $ એ અંતરાલ $[-3, 0]$ માં રોલના પ્રમેયનું પાલન કરે છે તો $C$ મેળવો.
$0$
$1$
$-2$
$-3$
જો $f(x) = \cos x,0 \le x \le {\pi \over 2}$, તો વાસ્તવિક સંખ્યા $‘c’$ મધ્યકમાન પ્રમેયનો ઉપયોગ કરી ને મેળવો.
જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.
ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે વ્યાખ્યાયિત થાય, તો:
જો $ f(x) $ એ $ [2, 5]$ અંતરાલમાં વિકલનીય હોય કે જ્યાં $ f(2) = 1/5 $ અને $ f(5) = 1/2$ થાય, તો અસ્તિત્વ ધરાવતી સંખ્યા $c, 2 < c < 5 $ કે જો માટે $ f'(c) = ……$
જો $ [1, 3] $ પર વ્યાખ્યાયિત વિધેય $f(x) = x^3 - 6x^2 + ax + b$ એ $c\,\, = \,\,\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}$ માટે રોલના પ્રમેયનું પાલન કરે, તો.........