જો $a + b + c = 0 $ હોય, તો સમીકરણ $3ax^2 + 2bx + c = 0$ ના કેટલા બીજ હોય ?
$(0, 1) $ માં ઓછામાં ઓછું એક બીજ
$(1, 2)$ માં ઓછામાં ઓછું એક બીજ
$(0, 1)$ માં $2$ બીજ
$(0, 1) $ માં એક પણ બીજ નહી
વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ $[1, 3]$ માં રોલ ના પ્રમેયનું પાલન કરે છે તો $a$ અને $b$ મેળવો.
વિધેય $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ કે જ્યાં $\mathrm{x} \in[0,1]$ માં મ્ધયકમાન પ્રમેય અનુસાર $c$ ની કિમંત મેળવો.
વિધેય $f(x) = x(x + 3){e^{ - (1/2)x}}$ એ અંતરાલ $[-3, 0]$ માં રોલના પ્રમેયનું પાલન કરે છે તો $c$ ની કિમંત મેળવો.
જો $ [1, 3] $ પર વ્યાખ્યાયિત વિધેય $f(x) = x^3 - 6x^2 + ax + b$ એ $c\,\, = \,\,\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}$ માટે રોલના પ્રમેયનું પાલન કરે, તો.........
જો $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ અને $a_0$ , $a_2$ અને $a_1$ એ સમાંતર શ્રેણીમાં હોય તો $n$ ની કેટલી શક્ય કિમંતો મળે.