5. Continuity and Differentiation
hard

ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે  વ્યાખ્યાયિત થાય, તો: 

A

 $(0,2)$ માં ઓછામાં ઓછા બે $x$ માટે $f^{\prime \prime}(x)=0$

B

 $(0,1)$ માં બરાબર એક જ $x$ માટે $f^{\prime \prime}(x)=0$

C

 $(0,1)$ માં શૂન્ય નથી. કોઈ પણ $x$ માટે $f^{\prime \prime}(x)=0$

D

 $f^{\prime}\left(\frac{3}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)=1$

(JEE MAIN-2024)

Solution

${ }^{\prime}(x)=\frac{g^{\prime}(x)-g^{\prime}(2-x)}{2}, f^{\prime}\left(\frac{3}{2}\right)=\frac{g^{\prime}\left(\frac{3}{2}\right)-g^{\prime}\left(\frac{1}{2}\right)}{2}=0$

Also $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=\frac{\mathrm{g}^{\prime}\left(\frac{1}{2}\right)-\mathrm{g}^{\prime}\left(\frac{3}{2}\right)}{2}=0, \mathrm{f}^{\prime}\left(\frac{1}{2}\right)=0$

$ \Rightarrow \mathrm{f}^{\prime}\left(\frac{3}{2}\right)=\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=0 $

$ \Rightarrow \text { rootsin }\left(\frac{1}{2}, 1\right) \text { and }\left(1, \frac{3}{2}\right)$

$\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x})$ is zero at least twice in $\left(\frac{1}{2}, \frac{3}{2}\right)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.