ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે વ્યાખ્યાયિત થાય, તો:
$(0,2)$ માં ઓછામાં ઓછા બે $x$ માટે $f^{\prime \prime}(x)=0$
$(0,1)$ માં બરાબર એક જ $x$ માટે $f^{\prime \prime}(x)=0$
$(0,1)$ માં શૂન્ય નથી. કોઈ પણ $x$ માટે $f^{\prime \prime}(x)=0$
$f^{\prime}\left(\frac{3}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)=1$
વિધેય $f(x) = {e^x},a = 0,b = 1$, તો મધ્યકમાન પ્રમેય મુજબ $c$ ની કિમત મેળવો.
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[5,9]$
જો વિધેય $f(x)$ એ $[0,2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે અને જો $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ દરેક $x \in \left[ {0,2} \right]$, તો . . .
વિધેય $f(x) = |x|$ એ અંતરાલ $[-1, 1]$ માં રોલ ના પ્રમેયનું પાલન કરતું નથી કારણ કે . . . .
જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.