$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $

  • [IIT 1986]
  • A

    $0$

  • B

    $1$

  • C

    $3$

  • D

    $\sin \,4\alpha + \sin \,6\alpha $

Similar Questions

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

If $3\cos \theta  + 4\sin \theta  = 5$ then $3\sin \theta  - 4\cos \theta $ is

If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = $

If $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ then the value of $\tan \,2A$ in terms of $p$ and $q$ is