$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $
$\tan \frac{A}{2}$
$\cot \frac{A}{2}$
$\sec \frac{A}{2}$
${\rm{cosec}}\frac{A}{2}$
$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $
Let $0 < x < \frac{\pi }{4}.$ Then $\sec 2x - \tan 2x = $
Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
Suppose $\theta $ and $\phi (\ne 0)$ are such that $sec\,(\theta + \phi ),$ $sec\,\theta $ and $sec\,(\theta - \phi )$ are in $A.P.$ If $cos\,\theta = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to
If a $cos^3 \alpha + 3a \,cos\, \alpha \, sin^2\, \alpha = m$ and $asin^3\, \alpha + 3a \, cos^2\, \alpha \,sin\, \alpha = n$ . Then $(m + n)^{2/3} + (m - n)^{2/3}$ is equal to :