$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $
$\tan \frac{A}{2}$
$\cot \frac{A}{2}$
$\sec \frac{A}{2}$
${\rm{cosec}}\frac{A}{2}$
If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then
$\sin 12^\circ \sin 48^\circ \sin 54^\circ = $
$\sin 4\theta $ can be written as
If $A, B, C$ are acute positive angles such that $A + B + C = \pi $ and $\cot A\,\cot \,B\,\cot \,C = K,$ then
If $\theta = 3\, \alpha$ and $sin\, \theta =$ $\frac{a}{{\sqrt {{a^2}\,\, + \,\,{b^2}} }}$. The value of the expression , $a \,cosec\, \alpha - b \,sec\, \alpha$ is