3.Trigonometrical Ratios, Functions and Identities
hard

${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $

A

$\frac{1}{2}$

B

$\frac{1}{4}$

C

$\frac{3}{2}$

D

$\frac{3}{4}$

Solution

(c) ${\sin ^4}\frac{\pi }{8} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8}$

$= \frac{1}{4}\,\left[ {{{\left( {2{{\sin }^2}\frac{\pi }{8}} \right)}^2} + {{\left( {2{{\sin }^2}\frac{{3\pi }}{8}} \right)}^2}} \right]$

$ + \frac{1}{4}\,\left[ {{{\left( {2{{\sin }^2}\frac{\pi }{8}} \right)}^2} + {{\left( {2{{\sin }^2}\frac{{3\pi }}{8}} \right)}^2}} \right]$

= $\frac{1}{4}\,\left[ {{{\left( {1 – \cos \frac{\pi }{4}} \right)}^2} + {{\left( {1 – \cos \frac{{3\pi }}{4}} \right)}^2}} \right]$

$ + \frac{1}{4}\,\left[ {{{\left( {1 – \cos \frac{\pi }{4}} \right)}^2} + {{\left( {1 – \cos \frac{{3\pi }}{4}} \right)}^2}} \right]$

$=  \frac{1}{4}\,\left[ {{{\left( {1 – \frac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {1 + \frac{1}{{\sqrt 2 }}} \right)}^2}} \right] + \frac{1}{4}\,\left[ {{{\left( {1 – \frac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {1 + \frac{1}{{\sqrt 2 }}} \right)}^2}} \right]$

$= \frac{1}{4}(3)\, + \frac{1}{4}(3) = \frac{3}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.