3.Trigonometrical Ratios, Functions and Identities
hard

$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $

A

$0$

B

$1$

C

$3$

D

$\sin \,4\alpha + \sin \,6\alpha $

(IIT-1986)

Solution

(b) $3\left\{ {{{\sin }^4}\left( {\frac{{3\pi }}{2} – \alpha } \right) + {{\sin }^4}(3\pi + \alpha )} \right\}$
$ – 2\left\{ {{{\sin }^6}\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi – \alpha )} \right\}$
$ = 3\,\{ {( – \cos \alpha )^4} + {( – \sin \alpha )^4}\} – 2\,\{ {\cos ^6}\alpha + {\sin ^6}\alpha \} $
=$3\,\,\{ {({\cos ^2}\alpha + {\sin ^2}\alpha )^2} – 2{\sin ^2}\alpha {\cos ^2}\alpha \} $
$ – 2\,\{ {({\cos ^2}\alpha + {\sin ^2}\alpha )^3} – 3{\cos ^2}\alpha {\sin ^2}\alpha ({\cos ^2}\alpha + {\sin ^2}\alpha )\} $
$ = 3 – 6{\sin ^2}\alpha {\cos ^2}\alpha – 2 + 6{\sin ^2}\alpha {\cos ^2}\alpha = 3 – 2 = 1$
ट्रिक : $\alpha = 0,\frac{\pi }{2}$ रखने पर व्यंजक का मान $1$ आता है अर्थात् यह $\alpha $ से स्वतंत्र है।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.