English
Gujarati
1.Set Theory
hard

यदि $A = [(x,\,y):{x^2} + {y^2} = 25]$ तथा B = $[(x,\,y):{x^2} + 9{y^2} = 144]$, तब $A \cap B$ में है

A

एक बिन्दु

B

तीन बिन्दु

C

दो बिन्दु

D

चार बिन्दु

Solution

$A = (x, y) : $ ${x^2} + {y^2} = 25 = {5^2}$ के सभी मानों का समुच्चय

$B =$ $\frac{{{x^2}}}{{144}} + \frac{{{y^2}}}{{16}} = 1$अर्थात् $\frac{{{x^2}}}{{{{(12)}^2}}}$ + $\frac{{{y^2}}}{{{{(4)}^2}}} = 1$.

स्पष्टत: $ A \cap B $ में चार बिन्दु होंगे।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.