माना $A = \{ 2,\,4,\,6,\,8\} $, $A$ पर संबंध $R$, $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $, के द्वारा परिभाषित है, तब $R$ है
प्रति-सममित
स्वतुल्य
सममित
संक्रमक
माना $R = \{(1, 3), (2, 2), (3, 2)\} $ तथा $ S = \{(2, 1), (3, 2), (2, 3)\} $ समुच्चय $A = \{1, 2, 3\}$ पर दो संबंध है, तब $RoS =$
सिद्ध कीजिए कि पूर्णाकों के समुच्चय $Z$ में $R =\{(a, b)$ : संख्या $2,(a-b)$ को विभाजित करती है $\}$ द्वरा प्रद्त संबंध एक तुल्यता संबंध है।
यदि $R = \{ (x,\,y)|x,\,y \in Z,\,{x^2} + {y^2} \le 4\} $, $Z $ में संबंध है, तब $R $ का प्रान्त $ (Domain)$ है
समुच्चय $8x \equiv 6(\bmod 14),\,x \in Z$, का हल है
माना $\mathrm{A}=\{1,2,3, \ldots \ldots \ldots 100\}$ है। माना $\mathrm{A}$ पर, $(x, y) \in R$ यदि और केवल यदि $2 x=3 y$ है, द्वारा परिभाषित एक संबंध $\mathrm{R}$ है। माना $\mathrm{A}$ पर एकसममित संबंध $\mathrm{R}_1$ है, जिससे लिए $\mathrm{R} \subset \mathrm{R}_1$ है तथा $\mathrm{R}_1$ में अवयवों की संख्या $\mathrm{n}$ है। तो $\mathrm{n}$ का न्यूनतम मान है .............