निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x, y$ से ठीक-ठीक $7$ सेमी लंबा है $\}$
$R =\{( x , y ): x$ is exactly $7\,cm$ taller than $y\}$
Now, $(x, x) \notin R$
since human being $x$ cannot be taller than himself.
$\therefore R$ is not reflexive.
Now, let $(x, y) \in R$
$\Rightarrow x$ is exactly $7 \,cm$ taller than $y$.
Then, $y$ is not taller than $x$ . $[$ since, $y $ is $7$ $cm$ smaller than $x]$
$\therefore(y, \,x) \notin R$
Indeed if $x$ is exactly $7 \,cm$ taller than $y$, then $y$ is exactly $7\, cm$ shorter than $x$.
$\therefore \,R$ is not symmetric.
Now,
Let $( x , \,y ),\,( y ,\, z ) \in R$
$\Rightarrow \,x$ is exactly $7 \,cm$ taller than $y$ and $y$ is exactly $7\, cm$ taller than $z$.
$\Rightarrow \,x$ is exactly $14\, cm$ taller than $z$
$\therefore(x,\, z) \notin R$
$\therefore \,R$ is not transitive.
Hence, $R$ is neither reflexive, nor symmetric, nor transitive.
माना $N$ प्राकतिक संख्याओं का समुच्चय है और $N$ पर एक संबंध $R$ निम्न द्वारा परिभाषित है : $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} \mid$ तो संबंध $R$
सिद्ध कीजिए कि $A =\{1,2,3,4,5\}$ में, $R =\{(a, b):|a-b|$ सम है$\}$ द्वारा प्रद्त संबंध $R$ एक तुल्यता संबंध है। प्रमाणित कीजिए कि $\{1,3,5\}$ के सभी अवयव एक दूसरे से संबीधत हैं और समुच्चय $\{2,4\}$ के सभी अवयव एक दूसरे से संबंधित हैं परंतु $\{1,3,5\}$ का कोई भी अवयव $\{2,4\}$ के किसी अवयव से संबंधित नहीं है।
मान लीजिए कि समुच्चय $A$ में धन पूर्णाकों के क्रमित युग्मों (ordered pairs)का एक संबंध $R ,(x, y) R (u, v),$ यदि और केवल यदि, $x v=y u$ द्वारा परिभाषित है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
$R, $ समुच्चय $A$ से समुच्चय $B $ में संबंध है, तब
प्राकृत संख्याओं के समुच्चय पर संबंध $ R, \{(a, b) : a = 2b\}$ द्वारा परिभाषित है तब ${R^{ - 1}}$ =