माना $ A = \{p, q, r\},$ निम्न में कौन $A $ पर तुल्यता संबंध नहीं है
${R_1} = \{ (p,q),\,(q,\,r),\,(p,r),(p,\,p)\} $
${R_2} = \{ (r,q),(r,p),(r,r),(q,q)\} $
${R_3} = \{ (p,p),(q,q),(r,r),(p,q)\} $
इनमें से कोई नहीं
माना $\mathrm{A}=\{2,3,4\}$ तथा $\mathrm{B}=\{8,9,12\}$ हैं। तो संबंध $\mathrm{R}=\left\{\left(\left(\mathrm{a}_1, \mathrm{~b}_1\right),\left(\mathrm{a}_2, \mathrm{~b}_2\right)\right) \in(\mathrm{A} \times \mathrm{B}, \mathrm{A} \times \mathrm{B})\right.$ : $a_1, b_2$ को विभाजित करता है तथा $a_2, b_1$ को विभाजित करता है $\}$ में अवयवों की संख्या हैं :
माना $A = \{1, 2, 3, 4\}$ तथा $R = \{(2, 2), (3, 3), (4, 4), (1, 2)\}, A $ पर संबंध है, तब $R$ है
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
समुच्चय $A =\{1,2,3, \ldots, 13,14\}$ में संबंध $R,$ इस प्रकार परिभाषित है कि $\mathrm{R}=\{(x, y): 3 x-y=0\}$
माना $R,$ परिमित समुच्चय $A$ जिसमें $n$ अवयव है, पर एक स्वतुल्य संबंध है तथा माना $R$ में $m$ क्रमित युग्म है, तब
यदि $R$ समुच्चय $A$ पर एक तुल्यता संबंध है, तब ${R^{ - 1}}$ है