माना $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ है तथा $\mathrm{A}$ पर एक संबंध $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: \mathrm{b}=|\mathrm{a}|$ या $\left.b^2=a+1\right\}$ है। तो संबंध $R$ में कम से कम कितने अवयव जोड़े जाएं, जिससे कि यह स्वतुल्य तथा सममित हो जाए ?_______________.
$5$
$7$
$6$
$4$
माना $A=\{1,2,3,4, \ldots . .10\}$ और $B=\{0,1,2,3,4\}$ हैं। संबंध $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: 2(\mathrm{a}-\mathrm{b})^2+\right.$ $3(\mathrm{a}-\mathrm{b}) \in \mathrm{B}\}$ में अवयवों की संख्या है______________
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x, y$ से ठीक-ठीक $7$ सेमी लंबा है $\}$
माना $R,$ परिमित समुच्चय $A$ जिसमें $n$ अवयव है, पर एक स्वतुल्य संबंध है तथा माना $R$ में $m$ क्रमित युग्म है, तब
माना $A = \{ 2,\,4,\,6,\,8\} $, $A$ पर संबंध $R$, $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $, के द्वारा परिभाषित है, तब $R$ है
सिद्ध कीजिए कि $R$ में $R =\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध $R$ स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।