संबंध $R$ परिभाषित है, $ R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\} $ तब ${R^{ - 1}}oR$ है
$\{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)\}$
$\{(1, 1), (4, 4), (7, 7), (3, 3)\}$
$\{(1, 5), (1, 6), (3, 6)\}$
इनमें से कोई नहीं
समुच्चय $A$ पर परिभाषित संबंध $R$, प्रति सममित है, यदि $(a,\,b) \in R \Rightarrow (b,\,a) \in R$
माना $A$ किसी परिवार के बच्चों का अरिक्त समुचय है, संबंध $x, y $ का भाई है' $A$ पर है
समुच्चय $A =\{ a , b , c \}$ पर निम्न दो द्विआधारी संबंधों पर विचार कीजिए
$R _{1}=\{( c , a ),( b , b ),( a , c ),( c , c ),( b , c ),( a , a )\}$
और $R _{2}=\{( a , b ),( b , a ),( c , c ),( c , a ),( a , a ),( b , b ),( a , c )\}$ तो
सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $R =\{(1,2),(2,1)\}$ द्वारा प्रदत्त संबंध $R$ सममित है कितु न तो स्वतुल्य है और न संक्रामक है।
माना $A = \{ 2,\,4,\,6,\,8\} $, $A$ पर संबंध $R$, $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $, के द्वारा परिभाषित है, तब $R$ है