संबंध $R $ समुच्चय $\{2, 3, 4, 5\}$ से $ \{3, 6, 7, 10\}$ में; $xRy$ द्वारा परिभाषित है $ \Leftrightarrow x$ सापेक्षिक अभाज्य है, $y $ के, तब $R$ का प्रान्त $(Domain)$ है
$\{2, 3, 5\}$
$\{3, 5\}$
$\{2, 3, 4\}$
$\{2, 3, 4, 5\}$
प्राकृत संख्याओं के समुच्चय पर संबंध $ R, \{(a, b) : a = 2b\}$ द्वारा परिभाषित है तब ${R^{ - 1}}$ =
माना किसी तल में स्थित सभी सरल रेखा का समुच्चय $L$ है तथा संबंध $R, L $ पर $\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$ के द्वारा परिभाषित है, तब $R$ है
मान लीजिए कि समुच्चय $A =\{1,2,3,4,5,6,7\}$ में $R =\{(a, b): a$ तथा $b$ दोनों ही या तो विषम हैं या सम हैं$\}$ द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
साथ ही सिद्ध कीजिए कि उपसमुच्चय $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय $\{2,4,6\}$ के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव उपसमुच्चय $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं है।
ऐसे संबंध का उदाहरण दीजिए, जो स्वतुल्य तथा संक्रामक हो किंतु सममित न हो।
सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में, $R =\{( P , Q ):$ बिंदु $P$ की मूल बिंदु से दूरी, बिंदु $Q$ की मूल बिंदु से दूरी के समान है $\}$ द्वारा प्रदत्त संबंध $R$ एक तुल्यता संबंध है। पुन: सिद्ध कीजिए कि बिंदु $P \neq(0,0)$ से संबीधित सभी बिंदुओं का समुच्चय $P$ से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूलबिंदु पर है।