- Home
- Standard 12
- Mathematics
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x$ तथा $y$ एक ही मोहल्ले में रहते है $\}$
Solution
$R =\{( x , y ): x$ and $y $ live in the same locality $\}$
Clearly, $( x , x ) \in R$ as $x$ and $x$ is the same human being.
$\therefore R$ is reflexive.
If $(x, y) \in R,$ then $x$ and $y$ live in the same locality.
$\Rightarrow y$ and $x$ live in the same locality.
$\Rightarrow(y, x) \in R$
$\therefore R$ is symmetric.
Now, let $(x, y) \in R$ and $(y, z) \in R$
$\Rightarrow x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality.
$\Rightarrow x$ and $z$ live in the same locality.
$\Rightarrow(x, z) \in R$
$\therefore R$ is transitive.
Hence, $R$ is reflexive, symmetric and transitive.