निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x$ तथा $y$ एक ही मोहल्ले में रहते है $\}$
$R =\{( x , y ): x$ and $y $ live in the same locality $\}$
Clearly, $( x , x ) \in R$ as $x$ and $x$ is the same human being.
$\therefore R$ is reflexive.
If $(x, y) \in R,$ then $x$ and $y$ live in the same locality.
$\Rightarrow y$ and $x$ live in the same locality.
$\Rightarrow(y, x) \in R$
$\therefore R$ is symmetric.
Now, let $(x, y) \in R$ and $(y, z) \in R$
$\Rightarrow x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality.
$\Rightarrow x$ and $z$ live in the same locality.
$\Rightarrow(x, z) \in R$
$\therefore R$ is transitive.
Hence, $R$ is reflexive, symmetric and transitive.
संबंध $R $ अरिक्त समुच्चय $ A $ पर परिभाषित तुल्यता संबंध होगा, यदि $R$
मान लीजिए कि समुच्चय $\{1,2,3,4\}$ में, $R =\{(1,2),(2,2),(1,1),(4,4),$ $(1,3),(3,3),(3,2)\}$ द्वारा परिभाषित संबंध $R$ है। निम्नलिखित में से सही उत्तर चुनिए।
समुच्चय $A$ पर परिभाषित संबंध $R$, प्रति सममित है, यदि $(a,\,b) \in R \Rightarrow (b,\,a) \in R$
$\{ x , y \}$ से $\{ x , y \}$ तक में से संबंध $R$ की प्रायिकता, जो सममित तथा संक्रामक दोनों है, होगी
सिद्ध कीजिए कि पूर्णाकों के समुच्चय $Z$ में $R =\{(a, b)$ : संख्या $2,(a-b)$ को विभाजित करती है $\}$ द्वरा प्रद्त संबंध एक तुल्यता संबंध है।