संबंध "सर्वागसम मापांक $m$" है

  • A

    केवल स्वतुल्य

  • B

    केवल संक्रमक

  • C

    केवल सममित

  • D

    एक तुल्यता संबंध

Similar Questions

सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A$ में, $R =\left\{\left( P _{1}, P _{2}\right): P _{1}\right.$ तथा $P _{2}$ की भुजाओं की संख्या समान हैं$\}$ प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4 ,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।

किसी समष्टीय समुच्चय के संदर्भ में, जिसमें एक उपसमुच्चय निहित है, के अंतर्गत एक संबंध होगा

माना $ R$  समुच्चय $A$ पर संबंध इस प्रकार है कि $R = {R^{ - 1}}$ तब $R $ है

माना किसी तल में स्थित सभी सरल रेखा का समुच्चय $L$ है तथा संबंध $R, L $ पर $\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$ के द्वारा परिभाषित है, तब $R$  है

समुच्चय $A =\{ a , b , c \}$ पर निम्न दो द्विआधारी संबंधों पर विचार कीजिए

$R _{1}=\{( c , a ),( b , b ),( a , c ),( c , c ),( b , c ),( a , a )\}$

और $R _{2}=\{( a , b ),( b , a ),( c , c ),( c , a ),( a , a ),( b , b ),( a , c )\}$ तो

  • [JEE MAIN 2018]