माना $P = \{ (x,\,y)|{x^2} + {y^2} = 1,\,x,\,y \in R\} $, तब $P $ है
स्वतुल्य
सममित
संक्रमक
प्रति-सममित
मान लीजिए कि $T$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $T$ में $R =\left\{\left( T _{1}, T _{2}\right): T _{1}, T _{2}\right.$ के सर्वागंसम है $\}$ एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता
संबंध है।
संबंध $R$ परिभाषित है, $ R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\} $ तब ${R^{ - 1}}oR$ है
समुच्चय $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ पर संबंध $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\}$ में कम से कम कितने अवयव जोड़े जाएं कि संबंध $R$ सममित तथा संक्रामक हो जाए।
दो परिमित समुच्चय $A $ तथा $B$ इस प्रकार है कि $n(A) = 2, n(B) = 3$. तब $A $ से $ B$ में कुल संबंधों की संख्या है
प्राकृत संख्याओं के समुच्चय पर संबंध $R $ इस प्रकार परिभाषित है कि $\{(a, b) : a$ तथा $b$ में $3$ का अन्तर है $\},$ तब $ R$ होगा