$x $ के वास्तविक मानों का समुच्चय, जो कि असमिका ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2x$ को संतुष्ट करता है, होगा
$\left( { - \infty ,\,2} \right]$
$[2,\,4]$
$\left[ {4, + \infty } \right)$
इनमें से कोई नहीं
मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?
यदि ${a^x} = b,{b^y} = c,{c^z} = a$ हो, तो $xyz $ का मान होगा
${\log _4}2 - {\log _8}2 + {\log _{16}}2 - ....\infty $ तक, का मान है
माना $\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c\ $है, जहाँ $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ तथा $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n} !}$ है तो $\mathrm{a}^2-\mathrm{b}+\mathrm{c}$ बराबर है
असमिका ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ के लिए, $x$ के वास्तविक मानों का समुच्चय है