यदि ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$हो तब ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$का मान है
$0$
$1$
$2$
इनमें से कोई नहीं
यदि $3^x=4^{x-1}$, तब $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
${\log _4}2 - {\log _8}2 + {\log _{16}}2 - ....\infty $ तक, का मान है
समीकरण $x ^{\left(16\left(\log _5 x \right)^3-68 \log _5 x \right)}=5^{-16}$
को संतुष्ट करने वाले $x$ के सभी धनात्मक वास्तविक मानों (positive real values) का गुणनफल (product)
. . . . . है।
यदि ${\log _7}2 = m,$ हो, तब ${\log _{49}}28$ बराबर होगा
यदि ${\log _{10}}x = y$हो, तब ${\log _{1000}}{x^2}$ का मान होगा