$A$ and $B$ are two radioactive substances whose half lives are $1$ and $2$ years respectively. Initially $10\, gm$ of $A$ and $1\, gm$ of $B$ is taken. The time (approximate) after which they will have same quantity remaining is ........... $years$
$6.62$
$5$
$3.2$
$7$
At time $t=0$, a material is composed of two radioactive atoms ${A}$ and ${B}$, where ${N}_{{A}}(0)=2 {N}_{{B}}(0)$ The decay constant of both kind of radioactive atoms is $\lambda$. However, A disintegrates to ${B}$ and ${B}$ disintegrates to ${C}$. Which of the following figures represents the evolution of ${N}_{{B}}({t}) / {N}_{{B}}(0)$ with respect to time $t$ ?
${N}_{{A}}(0)={No} . \text { of } {A} \text { atoms at } {t}=0$
${N}_{{B}}(0)={No} . \text { of } {B} \text { atoms at } {t}=0$
Write down the definition and formula of half life of radioactive substance.
Half life period of a radioactive sample is $T$. Let $x$ fraction disintegrates in time $'t'$. How much fraction will decay in $'\frac{t}{2}'$ time
A freshly prepared sample of a radioisotope of half-life $1386 \ s$ has activity $10^3$ disintegrations per second. Given that In $2=0.693$, the fraction of the initial number of nuclei (expressed in nearest integer percentage) that will decay in the first $80 \ s$ after preparation of the sample is :
A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life time of one species is $\tau$ and that of the other is $5 \tau$. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figures best represents the form of this plot