Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

$P$  is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1, N $ is the foot of the perpendicular from $P$  on the transverse axis. The tangent to the hyperbola at $P$  meets the transverse axis at $ T$  . If $O$ is the centre of the hyperbola, the $OT. ON$  is equal to :

A

$e^2$

B

$a^2$

C

$b^2$

D

$b^2/a^2$

Solution

$OT = a cos \theta $ ; $N = a sec \theta$ $ \Rightarrow $ $OT . ON = a^2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.