- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
$P$ is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1, N $ is the foot of the perpendicular from $P$ on the transverse axis. The tangent to the hyperbola at $P$ meets the transverse axis at $ T$ . If $O$ is the centre of the hyperbola, the $OT. ON$ is equal to :
A
$e^2$
B
$a^2$
C
$b^2$
D
$b^2/a^2$
Solution
$OT = a cos \theta $ ; $N = a sec \theta$ $ \Rightarrow $ $OT . ON = a^2$
Standard 11
Mathematics