10-2. Parabola, Ellipse, Hyperbola
hard

Consider a hyperbola $\mathrm{H}$ having centre at the origin and foci and the $\mathrm{x}$-axis. Let $\mathrm{C}_1$ be the circle touching the hyperbola $\mathrm{H}$ and having the centre at the origin. Let $\mathrm{C}_2$ be the circle touching the hyperbola $\mathrm{H}$ at its vertex and having the centre at one of its foci. If areas (in sq. units) of $\mathrm{C}_1$ and $\mathrm{C}_2$ are $36 \pi$ and $4 \pi$, respectively, then the length (in units) of latus rectum of $\mathrm{H}$ is

A

$\frac{28}{3}$

B

$\frac{14}{3}$

C

 $\frac{10}{3}$

D

 $\frac{11}{3}$

(JEE MAIN-2024)

Solution

$ \text { Let } \mathrm{H}: \frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1 \quad\left(\mathrm{~b}^2=\mathrm{a}^2\left(\mathrm{e}^2-1\right)\right) $

$ \therefore \mathrm{eq}^{\mathrm{n}} \text { of } \mathrm{C}_1=\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2 $

$ \text { Ar. }=36 \pi $

$ \pi \mathrm{a}^2=36 \pi $

$ \mathrm{a}=6 $

$ \text { Now radius of } \mathrm{C}_2 \text { can be } \mathrm{a}(\mathrm{e}-1) \text { or } \mathrm{a}(\mathrm{e}+1) $

$ \text { for } \mathrm{r}=\mathrm{a}(\mathrm{e}-1) \quad \text { for } \mathrm{r}=\mathrm{a}(\mathrm{e}+1) $

$ \text { Ar. }=4 \pi \quad \pi \mathrm{r}^2=4 \pi $

$ \pi \mathrm{a}^2(\mathrm{e}-1)^2=4 \pi \quad \mathrm{a}^2(\mathrm{e}+1)^2=4 $

$ 36 \pi(\mathrm{e}-1)^2=4 \pi \quad 36(\mathrm{e}+1)^2=4 $

$ \mathrm{e}-1=\frac{1}{3} \quad \mathrm{e}+1=\frac{1}{3} $

$ \mathrm{e}=\frac{4}{3} \quad-\frac{2}{3} $

$ \text { Not possible } $

$ \therefore \mathrm{b}^2=36\left(\frac{16}{9}-1\right)=28 $

$ \therefore \mathrm{LR}=\frac{2 \mathrm{~b}^2}{\mathrm{a}}=\frac{2 \times 28}{6}=\frac{28}{3} $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.