Consider a hyperbola $\mathrm{H}$ having centre at the origin and foci and the $\mathrm{x}$-axis. Let $\mathrm{C}_1$ be the circle touching the hyperbola $\mathrm{H}$ and having the centre at the origin. Let $\mathrm{C}_2$ be the circle touching the hyperbola $\mathrm{H}$ at its vertex and having the centre at one of its foci. If areas (in sq. units) of $\mathrm{C}_1$ and $\mathrm{C}_2$ are $36 \pi$ and $4 \pi$, respectively, then the length (in units) of latus rectum of $\mathrm{H}$ is

  • [JEE MAIN 2024]
  • A

    $\frac{28}{3}$

  • B

    $\frac{14}{3}$

  • C

     $\frac{10}{3}$

  • D

     $\frac{11}{3}$

Similar Questions

If $A$ and $B$ are the points of intersection of the circle $x^2+y^2-8 x=0$ and the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$ and $a$ point $P$ moves on the line $2 x-3 y+4=0$, then the centroid of $\triangle P A B$ lies on the line :

  • [JEE MAIN 2025]

The sound of a cannon firing is heard one second later at a position $B$ that at position $A$. If the speed of sound is uniform, then

  • [KVPY 2017]

For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remains constant with change in $'\alpha '$

  • [IIT 2003]

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 3 \sqrt{5},\,0),$ the latus rectum is of length $8$

The locus of a point $P (h, k)$ such that the line $y = hx + k$ is tangent to $4x^2 - 3y^2 = 1$ , is a/an