If line $ax$ + $by$ = $1$ is normal to the hyperbola $\frac{{{x^2}}}{{{p^2}}} - \frac{{{y^2}}}{{{q^2}}} = 1$ then $\frac{{{p^2}}}{{{a^2}}} - \frac{{{q^2}}}{{{b^2}}} = 1$ is equal to (where $a$,$b$,$p$, $q \in {R^ + })$-
$0$
$1$
${\left( {{a^2} + {b^2}} \right)^2}$
${\left( {{p^2} + {q^2}} \right)^2}$
The line $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
Product of length of the perpendiculars drawn from foci on any tangent to hyperbola ${x^2} - \frac{{{y^2}}}{4}$ = $1$ is
Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to
The equation of the tangent parallel to $y - x + 5 = 0$ drawn to $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ is
The point of contact of the line $y = x - 1$ with $3{x^2} - 4{y^2} = 12$ is