$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$  = 

  • A

    $sin \,x\, cos\, x$

  • B

    $- sin^2\, x$

  • C

    $- sin\, x\, cos\, x$

  • D

    $sin^2x$

Similar Questions

$\frac{{\sec \,8\theta  - 1}}{{\sec \,4\theta  - 1}}$ = 

 $\cos \frac{{2\pi }}{{28}}\,\cos ec\frac{{3\pi }}{{28}}\, + \,\cos \frac{{6\pi }}{{28}}\,\cos ec\frac{{9\pi }}{{28}} + \cos \frac{{18\pi }}{{28}}\cos ec\frac{{27\pi }}{{28}}$= 

If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is

  • [IIT 1993]

 $cosec \frac{\pi }{{18}} - \sqrt 3 \,sec\, \frac{\pi }{{18}}$ = 

જો $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ તો $\cos 2A = $