$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$ =
$sin \,x\, cos\, x$
$- sin^2\, x$
$- sin\, x\, cos\, x$
$sin^2x$
$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $
જો $A + B + C = {180^o},$ તો $\frac{{\tan A + \tan B + \tan C}}{{\tan A\,.\,\tan B\,.\,\tan C}} = $
સાબિત કરો કે : $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
જો $A + B + C = \pi \,(A,B,C > 0)$ અને ખૂણો $C$ એ ગુરુકોણ હોય તો
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $