જો $A + B + C = {180^o},$ તો $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = . . .$
$2\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
$4\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
$8\,\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
જો $\sin \theta+\cos \theta=\frac{1}{2}$ આપેલ હોય તો $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ ની કિમંત મેળવો.
$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $
$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $