$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
$\sec \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right)$
$\cos \left( {\frac{\pi }{8} - \frac{\alpha }{2}} \right)$
$\tan \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right)$
$\cot \left( {\frac{\alpha }{2} - \frac{\pi }{2}} \right)$
જો $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ તો $x + y + z = $
જો $\sin \theta = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,} + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$ થાય તો
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 = . . ..$
સાબિત કરો કે : $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$