$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $

  • A

    $\sec \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right)$

  • B

    $\cos \left( {\frac{\pi }{8} - \frac{\alpha }{2}} \right)$

  • C

    $\tan \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right)$

  • D

    $\cot \left( {\frac{\alpha }{2} - \frac{\pi }{2}} \right)$

Similar Questions

જો $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ તો $x + y + z = $

જો $\sin \theta  = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,}  + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$ થાય તો 

$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $

$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 = . . ..$

  • [IIT 1975]

સાબિત કરો કે : $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$