- Home
- Standard 11
- Mathematics
$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ નું $0\, \le \,\theta\, \le \, \pi$ માં વાસ્તવિક ઉકેલોની સંખ્યા ................ છે
$2$
$4$
$6$
$8$
Solution
given equation can be written as
$3 \,sin\, \theta – 4sin^3\theta = 4sin\theta \,sin\, 2\theta \,sin4\theta$
hence either $sin\, \theta = 0 \Rightarrow\, \theta = n\pi$
or $3 – 4sin^2\theta = 4\, sin\, 2\theta \,sin \,4\theta$
$3 – 2 (1 – cos\, 2\theta ) = 2 (cos\, 2\theta – cos \,6\theta )$
or $1 = – 2 cos\, 6\theta$
$cos \,6\theta = – \frac{1}{2} = cos\, \frac{2 \pi}{3}$
$6\theta = 2n \pi ± \frac{2 \pi}{3}$
if $0\, \le\, \theta\, \le\, \pi$ then total solution are $0,\frac{\pi }{9},\frac{{2\pi }}{9},\frac{{4\pi }}{9},\frac{{5\pi }}{9},\frac{{7\pi }}{9},\frac{{8\pi }}{9},\pi $ is $8$ real solutions.