$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ in $0\, \le \,\theta\, \le \, \pi$ has :
$2$ real solutions
$4$ real solutions
$6$ real solutions
$8$ real solutions.
If $\sec x\cos 5x + 1 = 0$, where $0 < x < 2\pi $, then $x =$
The variable $x$ satisfying the equation $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x} = \sqrt 3$ belongs to the interval
If $\cos \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1$, then the general value of $\theta $ is
The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is
If $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, then the general value of $\theta $ is