Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.

  • [JEE MAIN 2024]
  • A

    $123$

  • B

    $113$

  • C

    $421$

  • D

    $131$

Similar Questions

The values of $\mathrm{m}, \mathrm{n}$, for which the system of equations

$ x+y+z=4 $

$ 2 x+5 y+5 z=17 $

$ x+2 y+m z=n$

has infinitely many solutions, satisfy the equation :

  • [JEE MAIN 2024]

Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$

has a non-trivial solution, then the value of $\theta$ is :

  • [JEE MAIN 2021]

If the system of linear equations $x + 2ay + az = 0$ $x + 3by + bz = 0$ $x + 4cy + cz = 0$ has a non-zero solution, then $a, b, c$

If $x = a + 2b$ satisfies the cubic $(a, b\in R)$ $f (x)=$ $\left| {\,\begin{array}{*{20}{c}}{a - x}&b&b\\b&{a - x}&b\\b&b&{a - x}\end{array}\,} \right|$ $= 0$, then its other two roots are

Consider the following system of questions $\alpha x+2 y+z=1$  ;  $2 \alpha x+3 y+z=1$  ;  $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.

  • [JEE MAIN 2023]