Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.
$123$
$113$
$421$
$131$
The values of $\mathrm{m}, \mathrm{n}$, for which the system of equations
$ x+y+z=4 $
$ 2 x+5 y+5 z=17 $
$ x+2 y+m z=n$
has infinitely many solutions, satisfy the equation :
Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$
has a non-trivial solution, then the value of $\theta$ is :
If the system of linear equations $x + 2ay + az = 0$ $x + 3by + bz = 0$ $x + 4cy + cz = 0$ has a non-zero solution, then $a, b, c$
Consider the following system of questions $\alpha x+2 y+z=1$ ; $2 \alpha x+3 y+z=1$ ; $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.