Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set $S$ is equal to

  • [IIT 2016]
  • A

    $-\frac{7 \pi}{9}$

  • B

    $-\frac{2 \pi}{9}$

  • C

    $0$

  • D

    $\frac{5 z:}{9}$

Similar Questions

If $\tan \theta = t,$ then $\tan 2\theta + \sec 2\theta = $

Show that

$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$

$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $

The value of $\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $