The value of $cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ is 

  • A

    $\frac{1 }{{32}}$

  • B

    $\frac{1}{{16}}$

  • C

    $\frac{{\cos \,\,\left( {\pi /10} \right)}}{{16}}$

  • D

    $-\frac{{\sqrt {10\,\, + \,\,2\sqrt 5 } }}{{64}}$

Similar Questions

If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be

The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ is

  • [KVPY 2012]

In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to

$\frac{{\cos 12^\circ - \sin 12^\circ }}{{\cos 12^\circ + \sin 12^\circ }} + \frac{{\sin 147^\circ }}{{\cos 147^\circ }} = $

Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$