The value of $cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ is 

  • A

    $\frac{1 }{{32}}$

  • B

    $\frac{1}{{16}}$

  • C

    $\frac{{\cos \,\,\left( {\pi /10} \right)}}{{16}}$

  • D

    $-\frac{{\sqrt {10\,\, + \,\,2\sqrt 5 } }}{{64}}$

Similar Questions

If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-

If $\sin \theta  = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,}  + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $

The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is

$\tan 5x\tan 3x\tan 2x = $