$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if

  • A

    $x + y$ $\neq$  $0$

  • B

    $x = y$, $x$ $\neq$ $0$

  • C

    $x = y$

  • D

    $x$ $\neq$ $0$, $y$ $\neq$ $0$

Similar Questions

If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $

Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$

Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

Let $\alpha ,\beta $ be such that $\pi < (\alpha - \beta ) < 3\pi $. If $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ and $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ then the value of $\cos \frac{{\alpha - \beta }}{2}$ is

  • [AIEEE 2004]

If $\tan \alpha = \frac{1}{7},\;\tan \beta = \frac{1}{3},$ then $\cos 2\alpha = $