$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if

  • A

    $x + y$ $\neq$  $0$

  • B

    $x = y$, $x$ $\neq$ $0$

  • C

    $x = y$

  • D

    $x$ $\neq$ $0$, $y$ $\neq$ $0$

Similar Questions

If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is

If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0,$ then $\cot \,\left( {\frac{{x + y}}{2}} \right) = $

If $\tan \beta = \cos \theta \tan \alpha ,$ then ${\tan ^2}\frac{\theta }{2} = $

Suppose $\theta $ and $\phi  (\ne 0)$ are such that $sec\,(\theta  + \phi ),$ $sec\,\theta $ and $sec\,(\theta  - \phi )$ are in $A.P.$ If $cos\,\theta  = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to

  • [AIEEE 2012]

If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\  sinA + 4\  cosA$