If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is

  • A

    $1$

  • B

    $2$

  • C

    $\frac{1}{3}$

  • D

    $\frac{1}{2}$

Similar Questions

$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} = $ (when $x$ lies in $II^{nd}$ quadrant)

If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to

If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-

Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

The value of ${\cos ^2}\,{10^o}\,\, - \,\cos \,\,{10^o}\,\cos \,\,{50^o}\, + \,{\cos ^2}\,{50^o}$ is

  • [JEE MAIN 2019]