Suppose $\theta $ and $\phi  (\ne 0)$ are such that $sec\,(\theta  + \phi ),$ $sec\,\theta $ and $sec\,(\theta  - \phi )$ are in $A.P.$ If $cos\,\theta  = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to

  • [AIEEE 2012]
  • A

    $ \pm \sqrt 2 $

  • B

    $ \pm  1 $

  • C

    $ \pm \frac{1}{{\sqrt 2 }}$

  • D

    $ \pm  2 $

Similar Questions

Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$

$1 + \cos 2x + \cos 4x + \cos 6x = $

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $

If $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, then $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ is