3.Trigonometrical Ratios, Functions and Identities
hard

Suppose $\theta $ and $\phi  (\ne 0)$ are such that $sec\,(\theta  + \phi ),$ $sec\,\theta $ and $sec\,(\theta  - \phi )$ are in $A.P.$ If $cos\,\theta  = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to

A

$ \pm \sqrt 2 $

B

$ \pm  1 $

C

$ \pm \frac{1}{{\sqrt 2 }}$

D

$ \pm  2 $

(AIEEE-2012)

Solution

Since, $\sec \,(\theta  – \phi ),\,\,\sec \,\theta $ and $\sec \,(\theta  + \phi )$ are in $A.P.,$

$\therefore \,2\,\sec \,\theta \, = \,\sec \,(\theta  – \phi ) + \sec \,(\theta  + \phi )$

$ \Rightarrow \frac{2}{{\cos \theta \,}} = \frac{{\cos \,(\theta  + \phi ) + \,\cos \,(\theta  – \phi )}}{{\cos \,(\theta  – \phi )\,\cos \,(\theta  + \phi )}}$

$ \Rightarrow \,2({\cos ^2}\theta  – {\sin ^2} \phi  )\, = \,\cos \,\theta \,[2\,\cos \theta \,\cos \phi ]$

$ \Rightarrow \,{\cos ^2}\theta \,(1 – \cos \phi )\, = \,{\sin ^2}\phi \, = \,1 – {\cos ^2}\phi $

$ \Rightarrow \,{\cos ^2}\theta \, = 1 + \cos \phi \, = 2{\cos ^2}\frac{\phi }{2}$

$\therefore \,\,\cos \,\theta \, = \, \pm \,\sqrt 2 \cos \frac{\phi }{2}$

But given $\cos \,\theta \, = k\cos \frac{\phi }{2}$

$\therefore \,\,k = \,\, \pm \,\sqrt 2 $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.