Suppose $\theta $ and $\phi (\ne 0)$ are such that $sec\,(\theta + \phi ),$ $sec\,\theta $ and $sec\,(\theta - \phi )$ are in $A.P.$ If $cos\,\theta = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to
$ \pm \sqrt 2 $
$ \pm 1 $
$ \pm \frac{1}{{\sqrt 2 }}$
$ \pm 2 $
Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$
$1 + \cos 2x + \cos 4x + \cos 6x = $
$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $
If $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, then $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ is