$A-(A-B)$ =
$A \cup B$
$A \cap B$
$A \cap {B^c}$
${A^c} \cap B$
ગણ $A, B$ અને $C$ એવા શોધો કે જેથી $A \cap B, B \cap C$ અને $A \cap C$ અરિક્ત ગણો થાય અને $A \cap B \cap C=\varnothing$ બને.
$X = \{ $ રામ, ગીતા, અકબર $\} $ અને $Y = \{ $ ગીતા, ડેવિડ, અશોક $\} $ ના ગણો $X$ અને $Y$ માટે $X \cap Y$ શોધો.
બે ગણું $X$ અને $Y$ એવા છે કે ગણ $X$ માં $40$ ઘટકો, $X \cup Y$ માં $60$ ઘટકો અને $X$ $\cap\, Y$ માં $10$ ઘટકો હોય, તો $Y$ માં કેટલા ઘટકો હશે?
જો બે ગણ $X$ અને $Y$ માટે $n( X )=17, n( Y )=23$ અને $n( X \cup Y )=38$ હોય, તો $n( X \cap Y )$ શોધો.
જો $A$ અને $B$ એ ગણ $S$ = $\{1,2,3,4\}$ ના બે ઉપગણો છે કે જેથી $A\ \cup \ B$ = $S$ થાય તો $(A, B)$ ની કેટલી જોડ મળે ?
Confusing about what to choose? Our team will schedule a demo shortly.