બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
$n(A) + n(B)$
$n(A) + n(B) - n(A \cap B)$
$n(A) + n(B) + n(A \cap B)$
$n(A)\,n(B)$
આકૃતિમાં ર્દશાવેલ છાયાંકિત ભાગ . . . . . વડે દર્શાવાય છે.
જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (B -A)$ મેળવો.
જો બે ગણો $A$ અને $B$ હોય તો
જો $A = \{x : x$ એ $4$ નો ગુણક છે$.\}$ અને $B = \{x : x$ એ $6$ નો ગુણક છે$.\}$ તો $A \cap B$ માં . . . . ના ગુણકનો સમાવેશ થાય.
જો $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ અને $D=\{7,8,9,10\} $ હોય, તો શોધો : $A \cup C$