બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
$n(A) + n(B)$
$n(A) + n(B) - n(A \cap B)$
$n(A) + n(B) + n(A \cap B)$
$n(A)\,n(B)$
(b) $n(A \cup B) = n(A) + n\,(B) – n(A \cap B)$.
જો ગણ $A$ અને $B$ માટે$A = \{ (x,\,y):y = {e^x},\,x \in R\} $; $B = \{ (x,\,y):y = x,\,x \in R\} ,$ હોય તો . .
જો ${N_a} = \{ an:n \in N\} ,$ તો ${N_3} \cap {N_4} = $
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap C \cap D$
જો બે ગણો $A$ અને $B$ છે કેે જેથી$n(A) = 0.16,\,n(B) = 0.14,\,n(A \cup B) = 0.25$. તો $n(A \cap B) =$
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap C$
Confusing about what to choose? Our team will schedule a demo shortly.