12.Atoms
medium

A $10\; kg$ satellite circles earth once every $2 \;hours$ in an orbit having a radius of $8000\; km$. Assuming that Bohr's angular momentum postulate applies to satellites just as it does to an electron in the hydrogen atom, find the quantum number of the orbit of the satellite.

A

$5.3 \times 10^{45}$

B

$6.1 \times 10^{42}$

C

$4.9 \times 10^{40}$

D

$7.1 \times 10^{48}$

Solution

$m v_{n} r_{n}=n h / 2 \pi$

Here $m=10 \,kg$ and $r_{n}=8 \times 10^{6} \,m .$

We have the time period $T$ of the circling satellite as $2 h$. That is $T=7200\, s$.

Thus the velocity $v_{n}=2 \pi r_{n} / T$

The quantum number of the orbit of satellite

$n=\left(2 \pi r_{n}\right)^{2} \times m /(T \times h)$

Substituting the values, $n=\left(2 \pi \times 8 \times 10^{6}\, m \right)^{2} \times 10 /\left(7200 s \times 6.64 \times 10^{-34}\, J s \right)$

$=5.3 \times 10^{45}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.