एक गुणोत्तर श्रेणी में पदों की संख्या सम है। यदि सभी पदों का योगफल विषम स्थान वाले पदों के योगफल का $5$ गुना है, तब सार्व-अनुपात होगा
$2$
$3$
$4$
$5$
यदि $a,\,b,\,c$ समान्तर श्रेणी में तथा ${a^2},\,{b^2},{c^2}$ हरात्मक श्रेणी में हों, तो
अनंत गुणोत्तर श्रेणी $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ के पदों का योग होगा
श्रेणी $(32)(32) 1/6(32)1/36 ...... $ अनन्त पदों तक का गुणनफल है
निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा
यदि बहुपद $1+x^2+x^4+x^6+\cdots+x^{22}$ को $1+x+x^2+x^3+\cdots+x^{11}$ से भाग दिया जाए तो शेष क्या हागा