Gujarati
Hindi
4-1.Newton's Laws of Motion
medium

A ball of mass $m$ moving with velocity $v_0$ collides a wall as shown in figure. After impact it rebounds with a velocity $\frac {3}{4}v_0$. The impulse acting on ball during impact is

A

$ - \frac{m}{2}\,\,{v_0}\hat j$

B

$ - \frac{3}{4}\,\,m{v_0}\hat i$

C

$ - \frac{5}{4}\,\,m{v_0}\hat i$

D

None of these

Solution

$\overrightarrow{\mathrm{v}}_{\mathrm{i}}=\mathrm{v}_{0} \cos 37^{\circ} \hat{\mathrm{i}}+\mathrm{v}_{0} \sin 37^{\circ} \hat{\mathrm{j}}=\frac{4}{5} \mathrm{v}_{0} \hat{\mathrm{i}}+\frac{3}{5} \mathrm{v}_{0} \hat{\mathrm{j}}$

$\overrightarrow{\mathrm{v}}_{\mathrm{f}}=-\frac{3}{4} \mathrm{v}_{0} \cos 53^{\circ} \hat{\mathrm{i}}+\frac{3}{4} \mathrm{v}_{0} \sin 53^{\circ} \hat{\mathrm{j}}$

$=-\frac{9}{20} \mathrm{v}_{0} \hat{\mathrm{i}}+\frac{3}{5} \mathrm{v}_{0} \hat{\mathrm{j}}$

$\overrightarrow{\mathrm{J}}=\mathrm{m}\left(\overrightarrow{\mathrm{v}}_{\mathrm{f}}-\overrightarrow{\mathrm{v}}_{\mathrm{i}}\right)=-\frac{5}{4} \mathrm{mv}_{0} \hat{\mathrm{i}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.