- Home
- Standard 11
- Physics
13.Oscillations
hard
A bar of mass $m$ is suspended horizontally on two vertical springs of spring constant $k$ and $3k$ . The bar bounces up and down while remaining horizontal. Find the time period of oscillation of the bar (Neglect mass of springs and friction everywhere).

A
$2\pi \sqrt {\frac{m}{k}} $
B
$2\pi \sqrt {\frac{m}{{3k}}} $
C
$\pi \sqrt {\frac{{2m}}{{3k}}} $
D
$2\pi \sqrt {\frac{{m}}{{4k}}} $
Solution
Let the elongation in spring are $\mathrm{x}_{1} \& \mathrm{x}_{2}$
$x_{1}+x_{2}=2 x$
$3 \mathrm{kx}_{1}=\mathrm{kx}_{2}$
$3 \mathrm{kx}_{1}+\mathrm{kx}_{2}=\mathrm{k}_{\mathrm{eq}} \mathrm{x}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}_{\mathrm{eq}}}}$
Standard 11
Physics