A particle of mass $m$ is attached to one end of a mass-less spring of force constant $k$, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its equilibrium position at time $t=0$ with an initial velocity $u_0$. When the speed of the particle is $0.5 u_0$, it collies elastically with a rigid wall. After this collision :

$(A)$ the speed of the particle when it returns to its equilibrium position is $u_0$.

$(B)$ the time at which the particle passes through the equilibrium position for the first time is $t=\pi \sqrt{\frac{ m }{ k }}$.

$(C)$ the time at which the maximum compression of the spring occurs is $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$.

$(D)$ the time at which the particle passes througout the equilibrium position for the second time is $t=\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$.

  • [IIT 2013]
  • A

    $(B,D)$

  • B

    $(B,C)$

  • C

    $(A,C)$

  • D

    $(A,D)$

Similar Questions

Aheavy brass sphere is hung from a light spring and is set in vertical small oscillation with a period $T.$ The sphere is now immersed in a non-viscous liquid with a density $1/10\,th$ the density of the sphere. If the system is now set in vertical $S.H.M.,$ its period will be

If the period of oscillation of mass $m$ suspended from a spring is $2\, sec$, then the period of mass $4m$ will be  .... $\sec$

  • [AIIMS 1998]

Two springs having spring constant $k_1$ and $k_2$ is connected in series, its resultant spring constant will be $2\,unit$. Now if they connected in parallel its resultant spring constant will be $9\,unit$, then find the value of $k_1$ and $k_2$.

A block of mass $m$ is attached to two springs of spring constants $k_1$ and $k_2$ as shown in figure. The block is displaced by $x$ towards right and released. The velocity of the block when it is at $x/2$ will be

Two oscillating systems; a simple pendulum and a vertical spring-mass-system have same time period of motion on the surface of the Earth. If both are taken to the moon, then-