$2\,kg$ દળ ધરાવતા બ્લોકને $20\,N / m$ સ્પ્રિંગ અચળાંક ધરાવતી બે સમાન સ્પ્રિંગ સાથે જોડવામાં આવે છે. બ્લોકને ધર્ષણ રહિત સપાટી પર મૂકવામાં આવે છે અને સ્પ્રિંગના છેડાને જડ આધાર સાથે લગાડવામાં આવે છે. (આકૃતિમાં જુઓ).જ્યારે દળને સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત કરવામાં આવે ત્યારે તે સરળ આવર્ત ગતિ કરે છે. દોલનોનો આવર્ત કાળ $\frac{\pi}{\sqrt{x}}$ છે. તો $x$ નું મૂલ્ય $...........$ છે.
$5$
$4$
$3$
$2$
સ્પ્રિંગ બેલેન્સમાં જે સ્કેલ છે તે $0$ થી $50\, kg$ સુધીનો છે. સ્કેલની લંબાઈ $20\, cm$ છે. આ કાંટા પર લટકાવવામાં આવેલ એક પદાર્થને સ્થાનાંતરિત કરીને મુક્ત કરવામાં આવે છે, તો તે $0.6\, s$ ના આવર્તકાળ સાથે દોલિત થાય છે. આ પદાર્થનું વજન કેટલું હશે ?
એક સ્પ્રિંગના છેડે $m$ દળનો પદાર્થ લટકાવીને દોલિત કરતાં આવૃત્તિ $“v''$ મળે છે. જો લટકાવેલ દળ ચોથા ભાગનું કરવામાં આવે તો હવે તેના દોલનની આવૃત્તિ કેટલી થાય ?
એક ઘડિયાળ $S$ એક સ્પ્રિંગના દોલનોને આધારે છે. જ્યારે બીજી ઘડિયાળ $P$ સાદા લોલકને આધારે છે. બંને ઘડિયાળ પૃથ્વીના દર મુજબ જ ફરે છે. તે બંનેને પૃથ્વી જેટલી જ ઘનતા પરંતુ પૃથ્વીથી બે ગણી ત્રિજ્યા ધરાવતા ગ્રહ પર લઈ જવામાં આવે તો ક્યું વિધાન સત્ય છે ?
જે દરેક સ્પ્રિંગ અચળાંક $K_1$ ધરાવતી બે એક સરખી સ્પ્રિંગ ને શ્રેણીમાં જોડવામાં આવે તો તેમનો નવો સ્પ્રિંગ અચળાંક અને આવર્તકાળ .............. ના અંશ થી બદલાશે.
$10\, N$ ના બળ દ્વારા એક સ્પ્રિંગને $5\, cm$ જેટલી ખેંચવામાં આવે છે. જ્યારે $2\, kg$ નું દળ લટકાવવામાં આવે તો દોલનોનો આવર્તકાળ $.....\,s$ છે.